

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Trench, Circular Pipe [715-BKFL-01]

Made By: PWD Date: 6/30/2025 Checked By: Date:

① CALCULATE THE TRENCH END AREA

$$W_b = B_C + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_C/6$$

(Trench width at top of pipe, ft)

$$W_t = K + T_C/6$$

(Trench width at top of trench, ft)

$$B_{CT} = (W_t + K)(T_C)/2$$

(Trench sectional area above top of pipe, ft^2)

$$B_{BC} = (H_C)(W_b + K)/2 - \pi(H_C/2)^2$$

(Trench sectional area below top of pipe, ft^2)

$$B_F = (W_b)(A) - A^2/12$$

(Trench sectional area below pipe, if req'd., ft^2)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B$$

(Length of Str. Backfill at bottom of trench, measured, ft)

$$L_{B2} = L_B - 4H_C$$

(Length of Str. Backfill at top of pipe, ft)

$$L_{B3} = L_{B2} - 4T_C$$

(Length of Str. Backfill at top of trench, ft)

$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$V_{CT} = (L_{B2} + L_{B3})(B_{CT})/54$$

(Str. Backfill volume above top of pipe, cys)

$$V_{BC} = (L_B + L_{B2})(B_{BC})/54$$

(Str. Backfill volume below top of pipe, cys)

$$V_F = (L_{E1})(B_F)/27$$

(Str. Backfill volume below pipe, if req'd., cys)

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

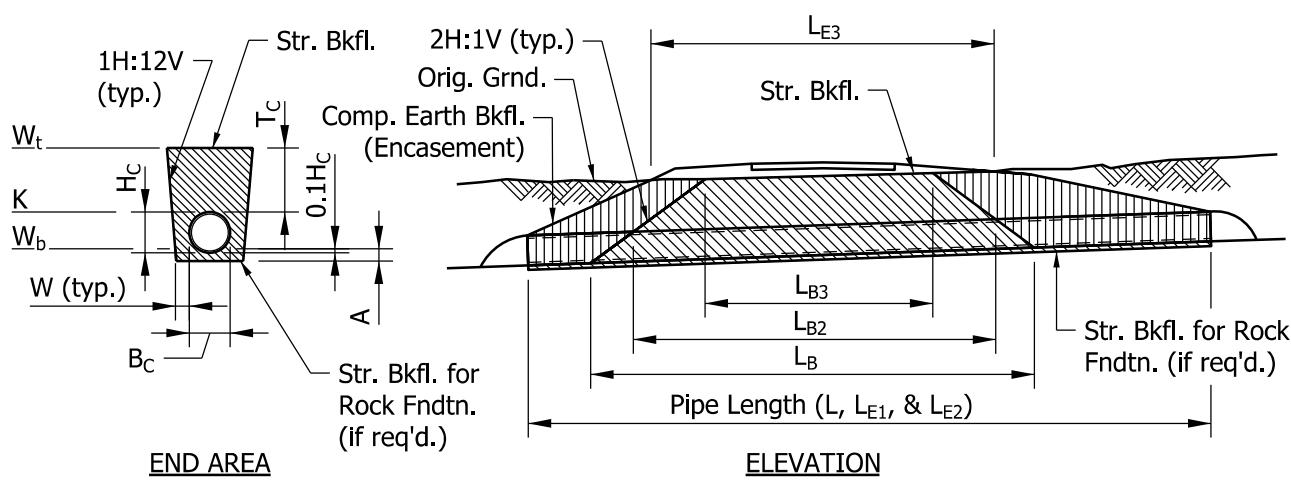
$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$L_{E2} = L_{E1}$$

(Trench length at top of pipe, ft)

$$L_{E3}$$


(Trench length at top of trench, measured, ft)

$$V_{ET} = (L_{E2} + L_{E3})(B_{CT})/54 - V_{CT}$$

(Encasement volume above top of pipe, cys)

$$V_{EB} = (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC}$$

(Encasement volume below top of pipe, cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Trench, Circular Pipe [715-BKFL-01]

Made By: PWD Date: 7/1/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 36 in. [3 ft]	Rock	= N
Wall Thickness	= 4 in.	T_C	= 6 ft
B_C & H_C	= 44 in. [3.67 ft]	L_{E3}	= 85 ft
Pipe Length (L)	= 200 ft	L_B	= 60 ft

① CALCULATE THE TRENCH END AREA

$$\begin{aligned}
 W &= 0.3B_C &= 0.3(3.67) &= 1.1 \text{ ft} \\
 W_b &= B_C + 2W &= 3.67 + 2(1.1) &= 5.87 \text{ ft} \\
 K &= W_b + H_C/6 &= 5.87 + 3.67/6 &= 6.48 \text{ ft} \\
 W_t &= K + T_C/6 &= 6.48 + 6/6 &= 7.48 \text{ ft}
 \end{aligned}$$

$$\begin{aligned}
 B_{CT} &= (W_t + K)T_C/2 \\
 &= (7.48 + 6.48)(6)/2 &= 41.88 \text{ ft}^2
 \end{aligned}$$

$$\begin{aligned}
 B_{BC} &= (H_C)(K + W_b)/2 - \pi(H_C/2)^2 \\
 &= (3.67)(6.48 + 5.87)/2 - \pi(3.67/2)^2 &= 12.08 \text{ ft}^2
 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned}
 L_B & & &= 60 \text{ ft} \\
 L_{B2} &= L_B - 4H_C &= 60 - (4)(3.67) &= 45.32 \text{ ft} \\
 L_{B3} &= L_{B2} - 4T_C &= 45.32 - (4)(6) &= 21.32 \text{ ft}
 \end{aligned}$$

$$\begin{aligned}
 V_{CT} &= (L_{B2} + L_{B3})(B_{CT})/54 \\
 &= (45.32 + 21.32)(41.88)/54 &= 51.68 \text{ cys}
 \end{aligned}$$

$$\begin{aligned}
 V_{BC} &= (L_B + L_{B2})(B_{BC})/54 \\
 &= (60.00 + 45.32)(12.08)/54 &= 23.56 \text{ cys} \quad \xrightarrow{V_{CT} + V_{BC}} 75.2 \text{ cys}
 \end{aligned}$$

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

$$\begin{aligned}
 L_{E1} &= L & &= 200 \text{ ft} \\
 L_{E2} &= L_{E1} & &= 200 \text{ ft} \\
 L_{E3} & & &= 85 \text{ ft}
 \end{aligned}$$

$$\begin{aligned}
 V_{ET} &= (L_{E2} + L_{E3})(B_{CT})/54 - V_{CT} \\
 &= (200 + 85)(41.88)/54 - 51.68 &= 169.35 \text{ cys}
 \end{aligned}$$

$$\begin{aligned}
 V_{EB} &= (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC} \\
 &= (200 + 200)(12.08)/54 - 23.56 &= 65.92 \text{ cys} \quad \xrightarrow{V_{ET} + V_{EB}} 235.3 \text{ cys}
 \end{aligned}$$

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Embankment, Circular Pipe [715-BKFL-02]

Made By: PWD Date: 8/27/2025 Checked By: _____ Date: _____

① CALCULATE THE TRENCH END AREA

$$W_b = B_C + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_C/6$$

(Trench width at top of pipe, ft)

$$K_3 = K + V_C/6$$

(Trench width at top of trench, ft)

$$B_{CV} = (K_3 + K)(V_C)/2$$

(Trench sectional area above top of pipe, ft^2)

$$B_{BC} = (H_C)(W_b + K)/2 - \pi(H_C/2)^2$$

(Trench sectional area below top of pipe, ft^2)

$$B_F = (W_b)(A) - A^2/12$$

(Trench sectional area below pipe, if req'd., ft^2)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B$$

(Length of Str. Backfill at bottom of trench, measured, ft)

$$L_{B2} = L_B - 4H_C$$

(Length of Str. Backfill at top of pipe, ft)

$$L_{B3} = L_{B2} - 4T_C$$

(Length of Str. Backfill at top of trench, ft)

$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$V_{CV} = (L_{B2} + L_{B3})(B_{CV})/54$$

(Str. Backfill volume above top of pipe, cys)

$$V_{BC} = (L_B + L_{B2})(B_{BC})/54$$

(Str. Backfill volume below top of pipe, cys)

$$V_F = (L_{E1})(B_F)/27$$

(Str. Backfill volume below pipe, if req'd., cys)

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

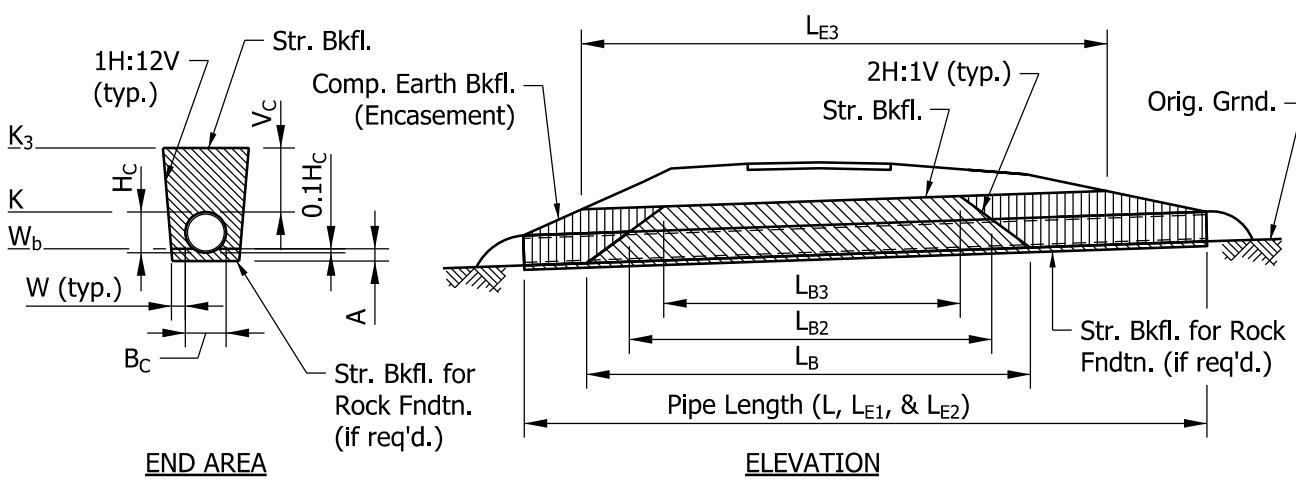
$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$L_{E2} = L_{E1}$$

(Trench length at top of pipe, ft)

$$L_{E3}$$


(Trench length at top of trench, measured, ft)

$$V_{EV} = (L_{E2} + L_{E3})(B_{CV})/54 - V_{CV}$$

(Encasement volume above top of pipe, cys)

$$V_{EB} = (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC}$$

(Encasement volume below top of pipe, cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Embankment, Circular Pipe [715-BKFL-02]

Made By: PWD Date: 8/27/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 18 in. [1.5 ft]	Rock	= N
Wall Thickness	= 2.5 in.	V_C	= 1.5 ft
B_C & H_C	= 23 in. [1.92 ft]	L_{E1}	= 58 ft
Pipe Length (L)	= 70 ft	L_B	= 54 ft

① CALCULATE THE TRENCH END AREA

$$\begin{aligned}
 W &= 0.3B_C &= 0.3(1.92) &= 0.75 \text{ ft (min.)} \\
 W_b &= B_C + 2W &= 1.92 + 2(0.75) &= 3.42 \text{ ft} \\
 K &= W_b + H_C/6 &= 3.42 + (1.92)/6 &= 3.74 \text{ ft} \\
 K_3 &= K + V_C/6 &= 3.74 + (1.5)/6 &= 3.99 \text{ ft}
 \end{aligned}$$

$$\begin{aligned}
 B_{CV} &= (K_3 + K)(V_C)/2 &= (3.99 + 3.74)(1.5)/2 &= 5.80 \text{ ft}^2 \\
 &= (3.99 + 3.74)(1.5)/2 &= 5.80 \text{ ft}^2 \\
 B_{BC} &= (H_C)(W_b + K)/2 - \pi(H_C/2)^2 &= (1.92)(3.42 + 3.74)/2 - \pi(1.92/2)^2 &= 3.98 \text{ ft}^2
 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned}
 L_B & & &= 54 \text{ ft} \\
 L_{B2} &= L_B - 4H_C &= 54.00 - (4)(1.92) &= 46.32 \text{ ft} \\
 L_{B3} &= L_{B2} - 4T_C &= 46.32 - (4)(1.5) &= 40.32 \text{ ft}
 \end{aligned}$$

$$\begin{aligned}
 V_{CV} &= (L_{B2} + L_{B3})(B_{CV})/54 &= (46.32 + 40.32)(5.80)/54 &= 9.31 \text{ cys} \\
 &= (46.32 + 40.32)(5.80)/54 &= 9.31 \text{ cys} \\
 V_{BC} &= (L_B + L_{B2})(B_{BC})/54 &= (54.00 + 46.32)(3.98)/54 &= 7.39 \text{ cys} \\
 &= (54.00 + 46.32)(3.98)/54 & & \xrightarrow{V_{CV} + V_{BC}} 16.7 \text{ cys}
 \end{aligned}$$

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

$$\begin{aligned}
 L_{E1} &= L & &= 70 \text{ ft} \\
 L_{E2} &= L_{E1} & &= 70 \text{ ft} \\
 L_{E3} & & &= 58 \text{ ft}
 \end{aligned}$$

$$\begin{aligned}
 V_{EV} &= (L_{E2} + L_{E3})(B_{CV})/54 - V_{CV} & &= 4.44 \text{ cys} \\
 &= (70 + 58)(5.80)/54 - 9.31 & &= 4.44 \text{ cys} \\
 V_{EB} &= (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC} & & \xrightarrow{V_{EV} + V_{EB}} 7.4 \text{ cys} \\
 &= (70 + 70)(3.98)/54 - 7.39 & &= 2.93 \text{ cys}
 \end{aligned}$$

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Exist. Rdwy. Trench, Circular Pipe [715-BKFL-03, 04 & 05]

Made By: PWD Date: 9/16/2025 Checked By: _____ Date: _____

① CALCULATE THE TRENCH END AREA

$$W_b = B_c + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_c/6$$

(Trench width at top of pipe, ft)

$$W_t = K + T_c/6$$

(Trench width at top of trench, ft)

$$B_{CT} = (W_t + K)(T_c)/2$$

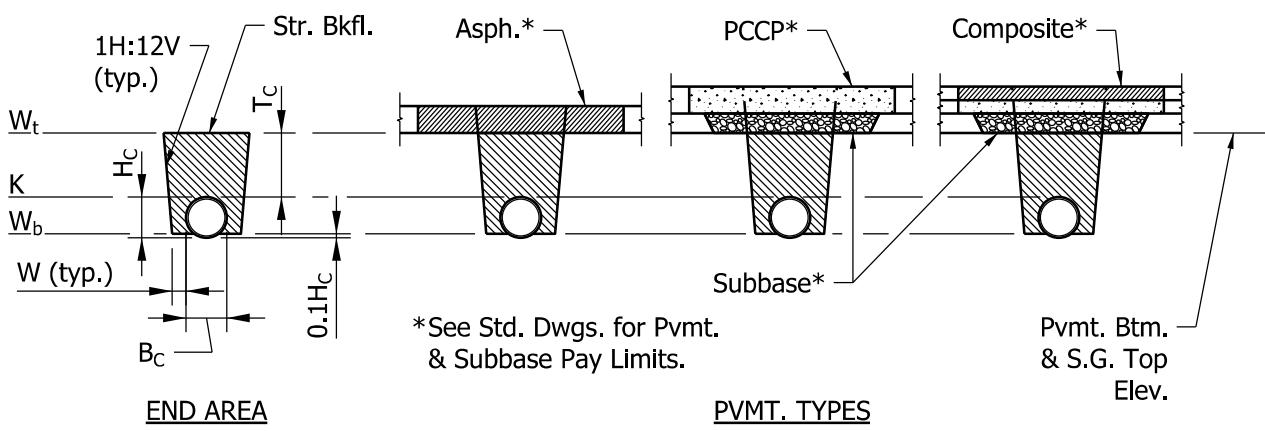
(Trench sectional area above top of pipe, ft^2)

$$B_{BC} = (H_c)(W_b + K)/2 - \pi(H_c/2)^2$$

(Trench sectional area below top of pipe, ft^2)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B$$


(Length of Str. Backfill at bottom of trench, measured, ft)

$$V_{CT} = (L_B)(B_{CT})/27$$

(Str. Backfill volume above top of pipe, cys)

$$V_{BC} = (L_B)(B_{BC})/27$$

(Str. Backfill volume below top of pipe, cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Exist. Rdwy. Trench, Circular Pipe [715-BKFL-03, 04 & 05]

Made By: PWD Date: 9/16/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 18 in. [1.5 ft]	T_C	= 7 ft
Wall Thickness	= 2.5 in.	L_B	= 48 ft
B_C & H_C	= 23 in. [1.92 ft]		
Pipe Length (L)	= 50 ft		

① CALCULATE THE TRENCH END AREA

$$\begin{aligned} W &= 0.3B_C & = 0.3(1.92) & = 0.75 \text{ ft (min.)} \\ W_b &= B_C + 2W & = 1.92 + 2(0.75) & = 3.42 \text{ ft} \\ K &= W_b + H_C/6 & = 3.42 + 1.92/6 & = 3.74 \text{ ft} \\ W_t &= K + T_C/6 & = 3.74 + 7/6 & = 4.91 \text{ ft} \\ \\ B_{CT} &= (W_t + K)(T_C)/2 & & \\ &= (4.91 + 3.74)(7)/2 & & = 30.28 \text{ ft}^2 \\ B_{BC} &= (H_C)(W_b + K)/2 - \pi(H_C/2)^2 & & \\ &= (1.92)(3.74+3.42)/2 - \pi(1.92/2)^2 & & = 3.98 \text{ ft}^2 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned} L_B & & & = 48 \text{ ft} \\ \\ V_{CT} &= (L_B)(B_{CT})/27 & & \\ &= (48)(30.28)/27 & & = 53.83 \text{ cys} \\ V_{BC} &= (L_B)(B_{BC})/27 & & \\ &= (48)(3.98)/27 & & = 7.08 \text{ cys} \end{aligned} \quad \begin{array}{c} V_{CT} + V_{BC} \\ \hline \end{array} \quad 60.9 \text{ cys}$$

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 2, Trench, Circular Pipe [715-BKFL-06]

Made By: PWD Date: 8/27/2025 Checked By: _____ Date: _____

① CALCULATE THE TRENCH END AREA

$$W_b = B_c + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_c/6$$

(Trench width at top of pipe, ft)

$$W_t = K + T_c/6$$

(Trench width at top of trench, ft)

$$B_{CT} = (W_t + K)(T_c)/2$$

(Trench sectional area above top of pipe, ft^2)

$$B_{BC} = (H_c)(W_b + K)/2 - \pi(H_c/2)^2$$

(Trench sectional area below top of pipe, ft^2)

$$B_F = (W_b)(A) - A^2/12$$

(Trench sectional area below pipe, if req'd., ft^2)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B$$

(Length of Str. Backfill at bottom of trench, measured, ft)

$$L_{B2} = L_B - 4H_c$$

(Length of Str. Backfill at top of pipe, ft)

$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$V_{BC} = (L_B + L_{B2})(B_{BC})/54$$

(Str. Backfill volume below top of pipe, cys)

$$V_F = (L_{E1})(B_F)/27$$

(Str. Backfill volume below pipe, if req'd., cys)

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

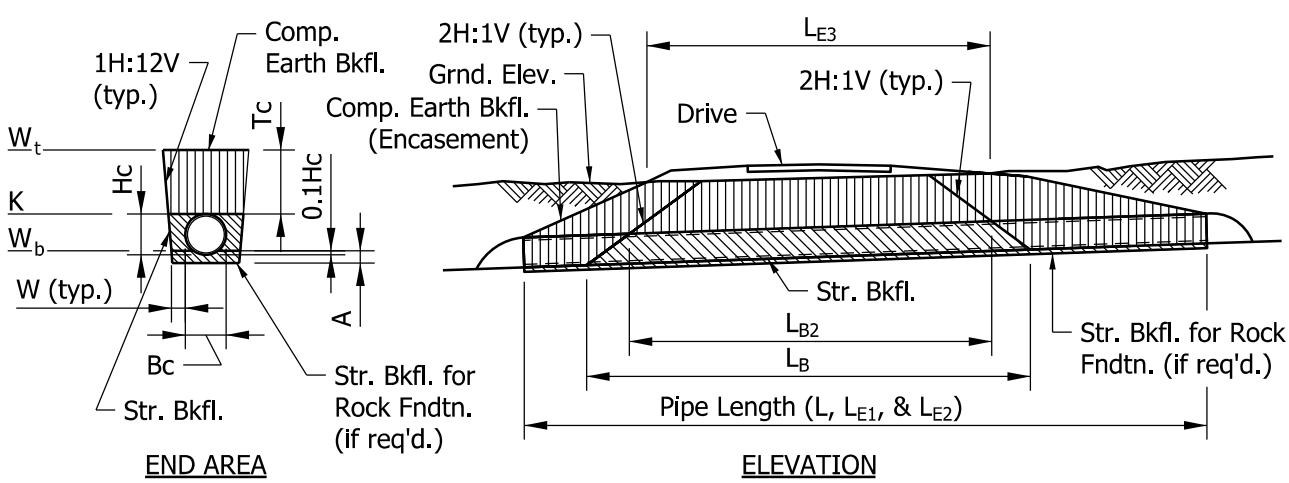
$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$L_{E2} = L_{E1}$$

(Trench length at top of pipe, ft)

$$L_{E3}$$


(Trench length at top of trench, measured, ft)

$$V_{ET} = (L_{E2} + L_{E3})(B_{CT})/54$$

(Encasement volume above top of pipe, cys)

$$V_{EB} = (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC}$$

(Encasement volume below top of pipe, cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 2, Trench, Circular Pipe [715-BKFL-06]

Made By: PWD Date: 9/16/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 24 in. [2 ft]	Rock	= N
Wall Thickness	= 3 in.	T_C	= 5 ft
B_C & H_C	= 30 in. [2.5 ft]	L_{E1}	= 60 ft
Pipe Length (L)	= 70 ft	L_B	= 40 ft

① CALCULATE THE TRENCH END AREA

$$\begin{aligned} W &= 0.3B_C & = 0.3(2.50) & = 0.75 \text{ ft} \\ W_b &= B_C + 2W & = 2.50 + 2(0.75) & = 4.00 \text{ ft} \\ K &= W_b + H_C/6 & = 4.00 + 2.50/6 & = 4.42 \text{ ft} \\ W_t &= K + T_C/6 & = 4.42 + 5/6 & = 5.25 \text{ ft} \\ \\ B_{CT} &= (W_t + K)T_C/2 & & \\ &= (5.25 + 4.42)(5)/2 & & = 24.18 \text{ ft}^2 \\ B_{BC} &= (H_C)(W_b + K)/2 - \pi(H_C/2)^2 & & \\ &= (2.5)(4.42+4.00)/2 - \pi(2.5/2)^2 & & = 5.62 \text{ ft}^2 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned} L_B & & & = 40 \text{ ft} \\ L_{B2} &= L_B - 4H_C & = 60 - (4)(2.5) & = 30 \text{ ft} \\ \\ V_{BC} &= (L_B + L_{B2})(B_{BC})/54 & & \\ &= (40 + 30)(5.62)/54 & & = 7.29 \text{ cys} \quad \longrightarrow 7.3 \text{ cys} \end{aligned}$$

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

$$\begin{aligned} L_{E1} &= L & & = 70 \text{ ft} \\ L_{E2} &= L_{E1} & & = 70 \text{ ft} \\ L_{E3} & & & = 60 \text{ ft} \\ \\ V_{ET} &= (L_{E2} + L_{E3})(B_{CT})/54 & & \\ &= (70 + 60)(24.18)/54 & & = 58.21 \text{ cys} \\ V_{EB} &= (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC} & & \\ &= (70 + 70)(5.62)/54 - 7.29 & & = 7.28 \text{ cys} \quad \longrightarrow V_{ET} + V_{EB} \quad 65.5 \text{ cys} \end{aligned}$$

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 2, Embankment, Circular Pipe [715-BKFL-07]

Made By: PWD Date: 8/27/2025 Checked By: _____ Date: _____

① CALCULATE THE TRENCH END AREA

$$W_b = B_c + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_c/6$$

(Trench width at top of pipe, ft)

$$K_3 = K + V_c/6$$

(Trench width at top of trench, ft)

$$B_{CV} = (K_3 + K)(V_c)/2$$

(Trench sectional area above top of pipe, ft^2)

$$B_{BC} = (H_c)(W_b + K)/2 - \pi(H_c/2)^2$$

(Trench sectional area below top of pipe, ft^2)

$$B_F = (W_b)(A) - A^2/12$$

(Trench sectional area below pipe, if req'd., ft^2)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B = L_{E1} - 4H_c$$

(Length of Str. Backfill at bottom of trench, measured, ft)

$$L_{B2} = L_B - 4H_c$$

(Length of Str. Backfill at top of pipe, ft)

$$V_{BC} = (L_B + L_{B2})(B_{BC})/54$$

(Str. Backfill volume below top of pipe, cys)

$$V_F = (L_{E1})(B_F)/27$$

(Str. Backfill volume below pipe, if req'd., cys)

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

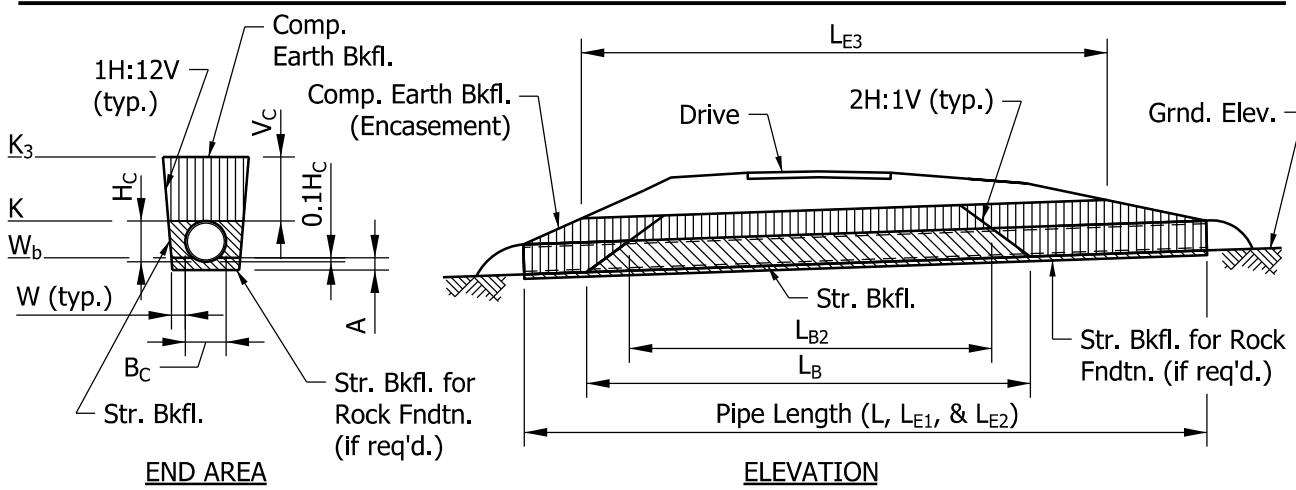
$$L_{E1} = L$$

(Trench length at bottom of trench, measured, ft)

$$L_{E2} = L_{E1}$$

(Trench length at top of pipe, ft)

$$L_{E3}$$


(Trench length at top of trench, measured, ft)

$$V_{ET} = (L_{E2} + L_{E3})(B_{CV})/54$$

(Encasement volume above top of pipe, cys)

$$V_{EB} = (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC}$$

(Encasement volume below top of pipe, cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 2, Embankment, Circular Pipe [715-BKFL-07]

Made By: PWD Date: 9/16/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 18 in. [1.5 ft]	Rock	= N
Wall Thickness	= 2.5 in.	V_C	= 1.5 ft
B_C & H_C	= 23 in. [1.92 ft]	L_{E2}	= 60 ft
Pipe Length (L)	= 70 ft	L_B	= 40 ft

① CALCULATE THE TRENCH END AREA

$$\begin{aligned} W &= 0.3B_C &= 0.3(1.92) &= 0.75 \text{ ft (min.)} \\ W_b &= B_C + 2W &= 1.92 + 2(0.75) &= 3.42 \text{ ft} \\ K &= W_b + H_C/6 &= 3.42 + 1.92/6 &= 3.74 \text{ ft} \\ K_3 &= K + V_C/6 &= 3.74 + 1.5/6 &= 3.99 \text{ ft} \\ \\ B_{CV} &= (K_3 + K)(V_C)/2 & & \\ &= (3.99 + 3.74)(1.5)/2 & &= 5.80 \text{ ft}^2 \\ B_{BC} &= (H_C)(W_b + K)/2 - \pi(H_C/2)^2 & & \\ &= (1.92)(3.74+3.42)/2 - \pi(1.92/2)^2 & &= 3.98 \text{ ft}^2 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned} L_B & & &= 40 \text{ ft} \\ L_{B2} &= L_B - 4H_C &= 40 - (4)(1.92) &= 32.32 \text{ ft} \\ \\ V_{BC} &= (L_B + L_{B2})(B_{BC})/54 & & \\ &= (40 + 32.32)(3.98)/54 & &= 5.33 \text{ cys} \quad \longrightarrow 5.3 \text{ cys} \end{aligned}$$

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

$$\begin{aligned} L_{E1} &= L & &= 70 \text{ ft} \\ L_{E2} &= L_{E1} & &= 70 \text{ ft} \\ L_{E3} & & &= 60 \text{ ft} \\ \\ V_{ET} &= (L_{E2} + L_{E3})(B_{CT})/54 & & \\ &= (70 + 60)(5.80)/54 & &= 13.96 \text{ cys} \\ V_{EB} &= (L_{E1} + L_{E2})(B_{BC})/54 - V_{BC} & & \\ &= (70 + 70)(3.98)/54 - 5.33 & &= 4.99 \text{ cys} \quad \longrightarrow V_{ET} + V_{EB} \\ & & &= 19.0 \text{ cys} \end{aligned}$$

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 3, Median Trench, Circular Pipe [715-BKFL-08]

Made By: PWD Date: 9/17/2025 Checked By: _____ Date: _____

① CALCULATE THE TRENCH END AREA

$$W_b = B_c + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_c/6$$

(Trench width at top of pipe, ft)

$$K_3 = K + V_c/6$$

(Trench width at top of str. bkfl., ft)

$$W_t = K + T_c/6$$

(Trench width at top of trench, ft)

$$B_{CV} = (K_3 + K)(V_c)/2$$

(Trench sectional area above pipe and below earth bkfl., ft²)

$$B_{VT} = (W_t + K_3)(T_c - V_c)/2$$

(Trench sectional area above top of str. bkfl., ft²)

$$B_{BC} = (H_c)(W_b + K)/2 - \pi(H_c/2)^2$$

(Trench sectional area below top of pipe, ft²)

$$B_F = (W_b)(A) - A^2/12$$

(Trench sectional area below pipe, if req'd., ft²)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B = \text{Length of Str. Backfill at bottom of trench, measured, ft}$$

$$L_{B2} = L_B - 4V_c$$

(Length of Str. Backfill at top of pipe, ft)

$$L_{B3} = L_{B2} - 4H_c$$

(Length of Str. Backfill at top of trench, ft)

$$V_{CV} = (L_B + L_{B2})(B_{CV})/54$$

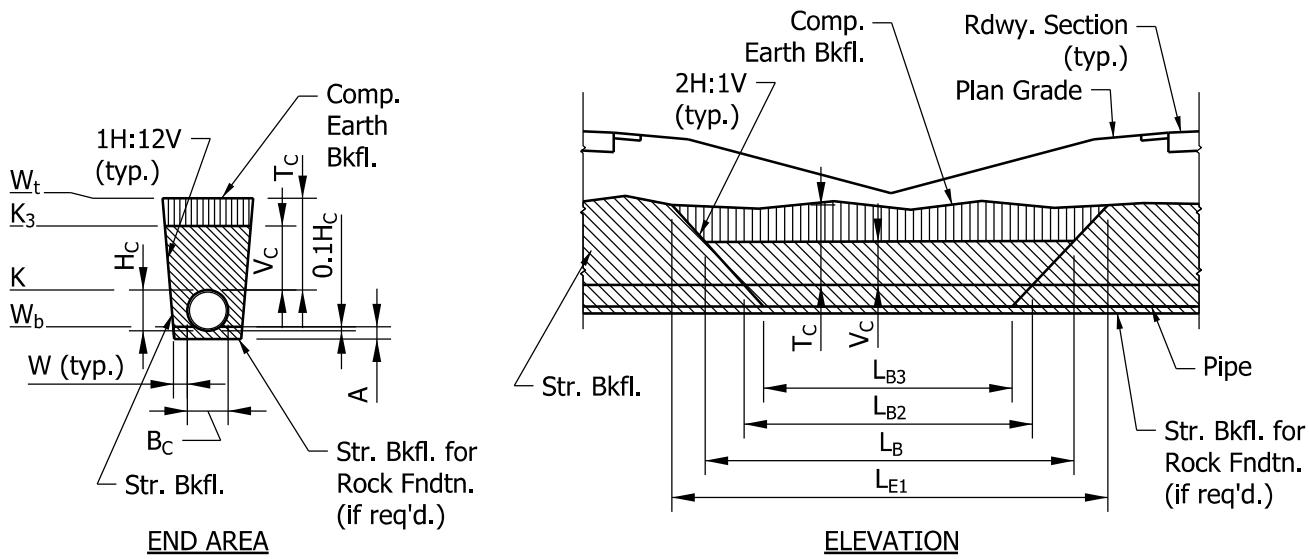
(Str. Backfill volume above top of pipe, cys)

$$V_{BC} = (L_{B2} + L_{B3})(B_{BC})/54$$

(Str. Backfill volume below top of pipe, cys)

$$V_F = (L_{B3})(B_F)/27$$

(Str. Backfill volume below pipe, if req'd., cys)


③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

$$L_{E1} = L_B + (4)(T_c - V_c)$$

(Trench length at top of trench, ft)

$$V_{ET} = (L_B + L_{E1})(B_{VT})/54$$

(Encasement volume above top of pipe, cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 3, Median Trench, Circular Pipe [715-BKFL-08]

Made By: PWD Date: 9/18/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 48 in. [4 ft]	Rock	= N
Wall Thickness	= 5 in.	T_C	= 3 ft
B_C & H_C	= 58 in. [4.83 ft]	L_B	= 250 ft
Pipe Length (L)	= 400 ft		

① CALCULATE THE TRENCH END AREA

$$\begin{aligned}
 W &= 0.3B_C &= 0.3(4.83) &= 1.45 \text{ ft} \\
 W_b &= B_C + 2W &= 4.83 + 2(1.45) &= 7.73 \text{ ft} \\
 K &= W_b + H_C/6 &= 7.73 + 4.83/6 &= 8.54 \text{ ft} \\
 K_3 &= K + V_C/6 &= 8.54 + 1.5/6 &= 8.79 \text{ ft} \\
 W_t &= K + T_C/6 &= 8.54 + 3/6 &= 9.04 \text{ ft} \\
 \\
 B_{CV} &= (K_3 + K)(V_C)/2 && \\
 &= (8.79 + 8.54)(1.5)/2 && = 13.00 \text{ ft}^2 \\
 B_{VT} &= (W_t + K_3)(T_C - V_C)/2 && \\
 &= (9.04 + 8.79)(3-1.5)/2 && = 13.37 \text{ ft}^2 \\
 B_{BC} &= (H_C)(W_b + K)/2 - \pi(H_C/2)^2 && \\
 &= (4.83)(8.54+7.73)/2 - \pi(4.83/2)^2 && = 20.97 \text{ ft}^2
 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned}
 L_B & & &= 250.00 \text{ ft} \\
 L_{B2} &= L_B - 4V_C &= 250 - (4)(1.5) &= 244.00 \text{ ft} \\
 L_{B3} &= L_{B2} - 4H_C &= 238 - (4)(4.83) &= 224.68 \text{ ft} \\
 \\
 V_{CV} &= (L_B + L_{B2})(B_{CV})/54 && \\
 &= (250.00 + 244.00)(13.00)/54 && = 118.93 \text{ cys} \\
 V_{BC} &= (L_{B2} + L_{B3})(B_{BC})/54 && \\
 &= (244.00 + 224.68)(20.97)/54 && = 182.00 \text{ cys} \xrightarrow{V_{BC} + V_{CV}} 300.9 \text{ cys}
 \end{aligned}$$

③ CALCULATE THE VOLUME OF COMPACTED EARTH BACKFILL

$$\begin{aligned}
 L_{E1} &= L_B + (4)(T_C - V_C) = 250 + (4)(3-1.5) &= 256.00 \text{ ft} \\
 V_{ET} &= (L_B + L_{E1})(B_{VT})/54 && \\
 &= (250 + 256)(13.37)/54 && = 125.28 \text{ cys} \xrightarrow{} 125.3 \text{ cys}
 \end{aligned}$$

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Median Embankment, Circular Pipe [715-BKFL-09]

Made By: PWD Date: 9/17/2025 Checked By: _____ Date: _____

① CALCULATE THE TRENCH END AREA

$$W_b = B_c + 2W$$

(Trench width at bottom of trench, ft)

$$K = W_b + H_c/6$$

(Trench width at top of pipe, ft)

$$K_3 = K + V_c/6$$

(Trench width at top of trench, ft)

$$B_{CV} = (K_3 + K)(V_c)/2$$

(Trench sectional area above top of pipe, ft^2)

$$B_{BC} = (H_c)(W_b + K)/2 - \pi(H_c/2)^2$$

(Trench sectional area below top of pipe, ft^2)

$$B_F = (W_b)(A) - A^2/12$$

(Trench sectional area below pipe, if req'd., ft^2)

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$L_B$$

(Length of Str. Backfill at bottom of trench, measured, ft)

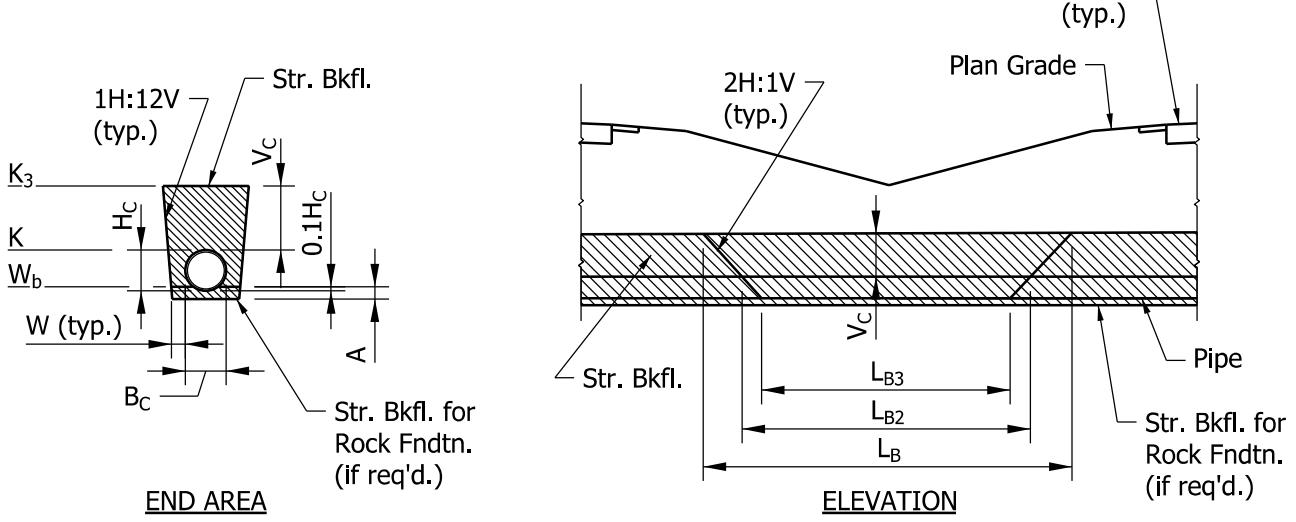
$$L_{B2} = L_B - 4V_c$$

(Length of Str. Backfill at top of pipe, ft)

$$L_{B3} = L_{B2} - 4H_c$$

(Length of Str. Backfill at top of trench, ft)

$$V_{CV} = (L_B + L_{B2})(B_{CV})/54$$


(Str. Backfill volume above top of pipe, cys)

$$V_{BC} = (L_{B2} + L_{B3})(B_{BC})/54$$

(Str. Backfill volume below top of pipe, cys)

$$V_F = (L_{B3})(B_F)/27$$

(Str. Backfill volume below pipe, if req'd., cys)

Project Name: Sample Backfill Calculations No. Structure Backfill Program

Structure Backfill, Method 1, Median Embankment, Circular Pipe [715-BKFL-09]

Made By: PWD Date: 9/18/2025 Checked By: _____ Date: _____

EXAMPLE:

Interior Dia.	= 54 in. [4.5 ft]	Rock	= N
Wall Thickness	= 5.5 in.	V_C	= 1.5 ft
B_C & H_C	= 65 in. [5.42 ft]	L_B	= 200 ft
Pipe Length (L)	= 400 ft		

① CALCULATE THE TRENCH END AREA

$$\begin{aligned} W &= 0.3B_C &= 0.3(5.42) &= 1.63 \text{ ft} \\ W_b &= B_C + 2W &= 5.42 + 2(1.63) &= 8.68 \text{ ft} \\ K &= W_b + H_C/6 &= 8.68 + 5.42/6 &= 9.58 \text{ ft} \\ K_3 &= K + V_C/6 &= 9.58 + 1.5/6 &= 9.83 \text{ ft} \end{aligned}$$

$$\begin{aligned} B_{CV} &= (K_3 + K)(V_C)/2 \\ &= (9.83 + 9.58)(1.5)/2 &= 14.56 \text{ ft}^2 \\ B_{BC} &= (H_C)(W_b + K)/2 - \pi(H_C/2)^2 \\ &= (5.42)(8.68+9.58)/2 - \pi(5.42/2)^2 &= 26.41 \text{ ft}^2 \end{aligned}$$

② CALCULATE THE VOLUME OF STRUCTURE BACKFILL

$$\begin{aligned} L_B &= 200.00 \text{ ft} \\ L_{B2} &= L_B - 4V_C &= 200 - (4)(1.5) &= 194.00 \text{ ft} \\ L_{B3} &= L_{B2} - 4H_C &= 194 - (4)(5.42) &= 172.32 \text{ ft} \end{aligned}$$

$$\begin{aligned} V_{CV} &= (L_B + L_{B2})(B_{CV})/54 \\ &= (200.00 + 194.00)(14.56)/54 &= 106.23 \text{ cys} \\ V_{BC} &= (L_{B2} + L_{B3})(B_{BC})/54 \\ &= (194.00 + 172.32)(26.41)/54 &= 179.16 \text{ cys} \end{aligned}$$

$V_{CV} + V_{BC}$ → 285.4 cys

Structure Backfill Quantities

Contract No. R-XXXXX

Project No. 1234567

Des. No. 9999999

Prepared by First Last, EIT, Date: 11/30/25

Checked by First Last, PE, Date: 12/31/25

Project Description: General Road from the intersection with First Street to the intersection with Last Road. RP109+05 to RP112+87

Structure No.	Structure Size	Shape	Rock Fdn.	Backfill Type	Backfill Method	Structure Length (ft.)	Trench Cover (ft.)	Structure Backfill (CYS)	Compacted Earth Fill (CYS)	Rock Fdn. Backfill (CYS)
1	36 in.	Circular	N	2	Method 1 - New Roadway, Trench	200.0	6.0	75.2	235.3	
2	18 in.	Circular	N	1	Method 1 - New Roadway, Embankment	70.0	3.1	16.7	7.4	
3	18 in.	Circular	N	2	Method 1 - Existing Roadway, Trench	50.0	7.0	60.9		
6	24 in.	Circular	N	2	Method 2 - New or Existing Drive, Trench	70.0	5.0	7.3	65.5	
7	18 in.	Circular	N	1	Method 2 - New or Existing Drive, Embankment	70.0	1.5	5.3	19	
8	48 in.	Circular	N	2	Method 3 - Median Installation, Trench	400.0	3.0	300.9	125.3	
9	54 in.	Circular	N	1	Method 1 - Median Installation, Embankment	400.0	3.0	285.4		